
CICS TS Performance Tutorial
– I/O Tuning

Eugene S. Hudders
C\TREK Corporation
eshudders@aol.com

407-469-3600

August 4, 2010

mailto:eshudders@aol.com

2

DISCLAIMERS/TRADEMARKS

• YMMV

• Remember the Political Factor

• CICS/VS, CICS/MVS, CICS/ESA, CICS TS, COBOL LE,
COBOL 2, VSAM, DB2, OS/390, MVS, z/OS and z/VSE
Are Trademarks of the International Business
Machines Armonk, NY

3

Agenda

• Introduction
• NSR

• Introduction
• NSR File Definitions
• NSR Buffer Definitions
• NSR Performance
• Recommendations

• LSR
• Robin Hood Theory
• Introduction to LSR
• LSR Tuning Areas
• Overlooked LSR Tuning Areas
• Recommendations

• Closing

4

Introduction

• CICS uses two techniques to handle VSAM files within CICS TS:
• Non-Shared Resources (NSR)
• Local Shared Resources (LSR)

• In recent years, new VSAM features announced for CICS have been
LSR oriented

• The major difference between the two techniques lies in the
“ownership” of the resources

• NSR resources are used exclusively by the file
• LSR resources are shared between participating files

• Note: There is an error in the CICS Performance Guide regarding CA
splits and their effect on how it can tie up the main task TCB for NSR
files – this information is in error

• There is no TCB lockout as stated in the manual
• Applies to z/OS as well as z/VSE

5

Introduction

• I/O generates CPU usage
• CICS to
• VSAM to
• SVC Handler to
• IOS
• Start the I/O and eventually back to
• CICS to have task wait
• Process I/O Interrupt
• Create SRB
• Dispatch the SRB to Post Completion
• To the CICS Dispatcher that dispatches the task when its turn occurs

• To improve response time and reduce CPU overhead, you need to
eliminate I/O

• Find the data/index in a buffer called a Look-Aside Hit
• CPU requirements for a Look-Aside Hit is much lower

Non-Shared Resources
NSR

7

Introduction to NSR

• NSR advantages include:
• Resources are reserved so one file can be specifically

tuned

• Allows for chained read operations that can give better
sequential performance
• BROWSE
• CA Splits
• Mass inserts

• Does not support Transaction Isolation

• Does not support VSAM Threadsafe

• NSR = BATCH Processing

8

NSR File Definition

• A file is defined as NSR by specifying LSRPOOLID (NONE)

• String number defines the number of concurrent file accesses
allowed

• One BUFND and one BUFNI is required per string

• Minimum buffer allocations:

• BUFND is string number plus one
• Extra buffer is used for split processing

• BUFNI is string number

9

NSR File Definition

• String definition for an NSR file can be a challenging task

• Many NSR files are over allocated in strings when
considering the I/O activity against the file

• The major reason is that NSR allows duplicate CIs to exist
between strings

• NSR allows STARTBR/READNEXT/READ for UPDATE
sequence without an intervening ENDBR

• This results in two strings being allocated to the task
• The requested CI appears 2X in VS
• As a result, many files would appear to be deadlocked due to lack of

strings
• This type of request will not work in LSR

• Remember that a string needs a BUFND/BUFNI
• Eliminate strings in favor of more buffers

10

NSR File Definition

• Additional buffers can be allocated
• Extra BUFND – will be used in sequential operations

• All available buffers will be allocated to the 1st sequential request

• Extra BUFNI – will be used to store Index Set (IS) indices
(high level indices)

• Sequence Set Indices (SSI) are never read into the extra
BUFNIs
• SSI CIs are read into the string index buffer
• No look aside to other string buffers are done

11

NSR Buffer Definition

• Example # 1:
• STRNO = 2 BUFND = 3 BUFNI = 2

STRNO 1 STRNO 2

BUFND 1

BUFNI 1

BUFND 3BUFND 2

BUFNI 2

Used For Split Processing

12

NSR Buffer Definition

• Example # 2:
• STRNO = 2 BUFND = 4 BUFNI = 3

STRNO 1 STRNO 2

BUFND 1

BUFNI 1

BUFND 3BUFND 2

BUFNI 2 BUFNI 3

BUFND 4

EXTRA BUFND CAN BE USED TO
READ ONE RECORD AHEAD IN THE
CASE OF A BROWSE AND THE
EXTRA BUFNI TO HOLD 1 INDEX SET
RECORD

13

NSR Performance

• Why would you want extra BUFNDs?
• In the case of a BROWSE request, to read ahead a number

of CIs to improve performance of the task

• In the case of Mass Insert, to write behind a series of CIs to
improve task performance

• In the case of CA Splits, to be able to move more than one
CI at a time to the new CA

• Overall, extra data buffers can speed up the process and
reduce I/O requests to the file

14

NSR Performance

• What is the hidden agenda?
• Browse

• The number of BUFNDs defined should contain the approximately the same number of
records read (READNEXT) by the program

• For example, if a CI can contain 5 records and the average # of
READNEXT operations issued is 20, then a BUFND specifying 4
additional buffers (5 records/CI*4 read ahead buffers) would be fine

• However, what programmer knows on the average how many
READNEXT operations are issued to a file?

• Also, only the 1st BROWSE request would benefit
• What happens if the BROWSE is ended (ENDBR) before the 20

READNEXT operations are done?
• Adding additional buffers for sequential BROWSE processing will increase the task

response time plus unneeded I/O operations may result
• In addition, having the data in storage is good for this task but may affect the response

of other tasks in the system

15

NSR Performance

• Mass Inserts
• The number of buffers should be around the same number of

writes (WRITE) issued to the file at one time
• Same logic as the BROWSE

• However, if the number of writes ends before all the buffers are full,
then there is no I/O penalty as in the case of a BROWSE

• CA Splits
• The number of buffers should be large enough to copy ½ of a CA at

time
• However, if the file does Mass Inserts or BROWSE operations,

there is no way to segregate the buffers for one particular use

16

NSR Performance

• What is the best approach for files that are heavily or
mainly browsed?
• If too many buffers are read, performance of other tasks

may be affected

• The key is to try and get a CISZ that generally
accommodates the # of READNEXT commands issued
• If too many, try to get a large multiple

• This approach can be used for LSR pool files too

17

NSR Performance

• Why would you want extra BUFNIs?

• Two types of index look asides occur for an NSR file
• The 1st look aside is for the Index Set records that are in

extra BUFNI buffers

• The 2nd look aside is within the string buffers to see if the
Sequence Set Index and/or the data CI are present

• No look aside possible to other string buffers

18

NSR Performance

• Additional index buffers allows VSAM to load the Index
Set records into virtual storage
• User should allocate sufficient BUFNIs as there are Index

Set CIs in the file

• Consideration should be given to adding additional index
buffers if the file reflects CA splits

• Data CA splits can cause index CA splits creating new
index set records

19

NSR Performance

• Determining the number of BUFNIs required entails
computing how many Sequence Set Index (SSI)
records exist in the file

• There is one Sequence Set Index record per data CA

• This is a one to one relationship

20

NSR Performance

• Compute:
1) # CAs = (Data HURBA / (# CI/CA*Data CISZ) this represent the # of

Sequence Set Index records in the file
2) From LISTCAT get the total number of Index records in the file and

determine the number of Index Set records in the file: (Total Number of
Index Records – # of CAs)

3) Determine the # of BUFNIs = (Total # Of Index Set records + # of strings +
CA split adjustment)

4) CA Split adjustment is any figure from zero to “n”, where “n” is the # of
additional Index set records created as a result of CA splits

21

NSR Performance

Data Information

Index Information

Need these two values

Need these two values

Need the number of index records

LISTCAT Extract

Are there any splits?

Determine number of
IX Levels

22

NSR Performance

• Example using previous LISTCAT information

• Data CISZ 18K (18,432)

• CI/CA 45

• Bytes/CA 829,440 (18432*45)

• CA splits Yes

• # of IX records 4

• HURBA 2,488,320

• # of IX levels 2

• (2488320/829440)=3 CAs or Sequence Set Records

• (4-3)=1 Index Set Record

• If STRNO=5, then (5+1+2)=8 BUFNI request for the file. The +2 is a
buffer for future CA splits at the index level. The CA adjustment
is optional and the value can vary

23

NSR Buffer Definition

• Example # 1 – VSAM 2 Index Levels:
• STRNO = 2 BUFND = 3 BUFNI = 2

• Requires three I/Os (2 index and 1 data)

• No opportunity for look aside

STRNO 1 STRNO 2

BUFND 1

BUFNI 1

BUFND 3BUFND 2

BUFNI 2

There is no look aside possible
because the index buffer gets
overlaid with every request
forcing three I/O operations

24

NSR Buffer Definition

• Example # 2 – VSAM 2 Index Levels:
• STRNO = 2 BUFND = 4 BUFNI = 3

• After 1st read, each request would require a maximum of two reads or a 33%
I/O operations savings

STRNO 1 STRNO 2

BUFND 1

BUFNI 1

BUFND 3BUFND 2

BUFNI 2 BUFNI 3

BUFND 4

The single Index Set record is
loaded into the extra BUFNI
and does not have to be re-read

Additional look aside
can occur at the string
buffers, potentially
saving additional I/O

25

NSR Recommendations
• NSR files should be reviewed to see why they are not in LSR for better

performance
• For example, Share Options 4 file

• Command Level Browse restrictions

• If the file is to be in NSR
• Ensure valid CISZ for files that are browsed

• Ensure sufficient BUFNIs allocated to hold the entire Index Set indices in
buffers

• Ensure that excess strings are eliminated and the storage used to allocate
correct file buffering

• Do not over allocate BUFND unless the file is prone only to CA splits

• If NSR must be used and files takes CA splits, consider activating the CO
TCB (SUBTSKS=1 in SIT) (multiple CPUs)

• NSR and Transaction Isolation are incompatible

• NSR is not supported under VSAM Threadsafe

Local Shared Resources
LSR

27

Robin Hood Theory

• Tuning LSR files is simply applying the Robin Hood theory in
reverse

• In Sherwood Forrest Robin stole from the rich to give to the poor
• In LSR you steal from the poor to give to the rich!!!!!

• Poor = Low to Medium Activity Files
• Rich = Most Active Files

• In other words the major contribution that low activity files
provide to LSR are their resources so that higher activity files can
use them (Cruel Reality)

28

Introduction to LSR

• LSR advantages include:

• More efficient VS use because resources are shared
• Better look-aside because buffers can maintain the Sequence Set

Index records
• Tends to be more self-tuning because buffers are allocated on an

LRU basis keeping information of the more active files in the
buffers at the expense of less active files

• Only one copy of a CI allowed (better read integrity)
• Can allocate up to 8 pools to segregate files
• Supports Transaction Isolation (TI)
• Supports VSAM Threadsafe (Local VSAM)

29

LSR Tuning Areas

• Pool Definition – Dynamic vs. Static

• Separate Index and Data Buffers

• Number of Strings

• Maximum Key Length

• Number, Sizes and Types of Buffers

• Pool Measurement – Hit Ratios

• Data

• Index

• Combined

30

LSR Tuning Areas

• Tuning Hit Ratio

• Overlooked LSR Tuning Areas

• Buffer Fragmentation

• LSR Buffer vs. File CISZ Reconciliation

• Page Boundary Allocation

• Buffer Pool Monopolization

• Maximum Key Size

• Number Strings Required

• Number of LSR Pools

• LSR Pool Candidates

• Share Options 4 Files

• File Activity

31

Pool Definition

• Dynamic Pool Definition – No CEDA Definition
• Advantages

• Allows for Quick Implementation and Installation
• Reduces System Programmer Intervention

• No Need to Compute CISZ vs. Buffers Required
• No Need to Determine Maximum Key Length
• No Need to Compute Number of Strings Required

• Disadvantages
• CISZ Contention Between Data and Index – Combined Pool
• Cannot Allocate Hipercache Buffers (If Available)
• Allocation of Buffers Is Based on a Percentage Not Activity
• String Allocation Based on % – Usually Over-Allocated
• Slow CICS Initialization (First File Opened)
• Combined Data/Index Pools Can Hide Bad Data/Index Performers

32

Pool Definition

• Static Definition

• Disadvantages
• Requires System Programmer Intervention to Determine

• Buffers Sizes and Quantity Required
• Maximum Key Length
• Number of Strings Needed

• Exposes System Programmer to Errors
• Incorrect Buffer Size Selection – Buffer Fragmentation
• Incorrect String Allocation
• Incorrect Maximum Key Size Specification

• Requires Planning – Not Everyone Likes to Do This!
• Must Specify Required Buffers, Maximum Key Length and

Number of Strings Required – Otherwise Pool Is Dynamically
Created

33

Pool Definition

• Static Definition

• Advantages
• Separate Pools for Data and Index Can Be Defined

• No CISZ Contention Between Data and Index

• Can Optimize Buffers that Have Higher Activity

• Can Optimize String and Maximum Key Size Required

• Can Allocate Hiperspace Buffers

• If applicable, need more than 32K buffers of a particular buffer
size

• Faster CICS Initialization

34

Pool Definition

• Recommendation
• Define LSR Pools Explicitly

• Determine Individual File Requirements
• Data and Index (If Applicable) CISZ required
• Maximum Length Key
• Strings

• Get “Big Picture” of Requirements
• CICS Performance Tool/Monitor
• CICS Statistics (EOD)
• Dynamic Definition – One Time

35

LSR Pool Measurement

• LSR Pool Effectiveness Is Based on Look-Aside Hit Ratios
• Generally Accepted Hit Ratios Are:

• Data – 80%+
• Index – 95%+
• Combined – 93%+

• Buffer Tuning Should Concentrate on Improving the Index Hit
Ratio First
• Generally, Index I/O Requests Are Higher Than the Data
• Real Storage Investment to Improve Index Hit Ratio Is Less

Due to Smaller CISZ Associated with the Index Component

36

LSR Pool Measurement

• Important Note:

• LSR Buffer Attainments Can Be Misleading

• If the 4 KB Buffer Reflects a Hit Ratio of 85%, This Does
Not Mean That Every File Is Getting an 85% Look-Aside
Hit Ratio

• The 85% is an Average of All the Files Using This Buffer
Size
• Some Get a Higher Attainment

• Others Get a Lower Attainment

37

LSR Pool Measurement

• Data Buffer Tuning Is Highly Dependent on Access Patterns

• Good Look-Aside Hit Ratios Usually Requires a Substantial
Storage Investment (80%+)

• The Major Cause Is That the Data Component Is Usually
Very Large (vs. Index Component)

• Good Hit Ratios Usually Result in Files with:
• Sequential Activity

• Read for Update/Rewrite/Delete

• Concentrated Read Activity

38

LSR Pool Measurement

• Data Buffer Tuning Is Highly Dependent on Access Patterns
• Bad Hit Ratios Usually Result in Files with:

• Disperse Read Activity (Very Large Files)
• Share Options 4

• Recommendation
• Buffer Tuning Is Usually a “trial and error” process in determining the number of buffers to add

to each buffer size
• Reiterative process

• You Add Buffers
• You Measure
• If Objective Met, Temporary End, Else Go Back to Add Buffers
• Temporary End Because Things Change and Require Periodic Observation

• Tune Buffer Pools and CI Sizes Individually
• Set Realistic Objectives, for Example:

• Data – 80%
• Index – 95%
• Combined – 93%

• Define a Minimum of Three 32K Catch-All Buffers

39

Overlooked LSR Tuning Areas

• Buffer Fragmentation
• Only Eleven Valid CISZ for LSR Buffers (K)

• 0.5 1.0 2.0 4.0 8.0 12.0
• 16.0 20.0 24.0 28.0 32.0

• Therefore, a 2.5K Byte CISZ Would Use a 4K LSR Buffer

• If a 4K Buffer Was Not Available, Then the Next Largest
Available Buffer Is Used

• Some Fragmentation May Be Desired for Certain CISZ
(e.g., non VSAM/E – 18.0K)

40

Overlooked LSR Tuning Areas

• Buffer Fragmentation

• Avoid Unnecessary Fragmentation (e.g., a 6K CISZ Using
a 12K Buffer)

• Certain Default Index CISZ Should Be Forced to an LSR
CISZ (e.g., 1536 to 2048 or 2560 to 4096)

• Virtual Fragmentation Results in Real Storage
Fragmentation

41

Overlooked LSR Tuning Areas

• LSR Buffer vs. File CISZ Reconciliation
• Best Alternative to Reducing Fragmentation

• Determine File CI Sizes Required and Assign LSR Pool
Buffers to Match
• Number and Size of Buffers
• Number of Strings (Overall)

• Set CISZ Standards (If possible) for LSR Pool Files

• Complex Task, If Done Manually

42

Overlooked LSR Tuning Areas

• LSR Buffer vs. File CISZ Reconciliation
• Some Installations Simply Define a Certain Number of

Buffers for Every Possible Buffer Size (11 Buffer Sizes)
• Alternate Example:

• Suppose You Don’t Have Any 16K Buffer Users (CISZ Range Is 14K
and 16K files)

• You Determine That You Want to Have Twenty 16K Buffers Defined
(320 K) Just in Case One Day You Get a 14K or 16K File

• This allocated Storage Will Not Be Used – Wasted Storage Every
Day of the Year

• Instead, Why Don’t You Simply Define Sixteen 20K Buffers (320K)
(or Next Useable Size) That Will Be Used Every Day

43

Overlooked LSR Tuning Areas

• Page Boundary Buffer Allocation (Minor)

• VSAM Requests Buffers on a Page Boundary and in Page
(4K) Increments

• Fragmentation That Occurs from Buffer Allocation Should
Be Avoided – Loss of Virtual Storage

• Allocate the Following Buffers in the Following Multiples:
• 0.5K Multiple of 8 (0.5K Times 8 = 4K)

• 1.0K Multiple of 4 (1.0K Times 4 = 4K)

• 2.0K Multiple of 2 (2.0K Times 2 = 4K)

44

Overlooked LSR Tuning Areas

• Buffer Monopolization

• Theory Behind LSR Is to Share Resources When Needed
• So What Can Be Bad If the Principal Files (Most Active) Control a

High Percentage of the Buffers?

• Even at the Expense of Low Activity Files

• How Do You Determine If a File Is Monopolizing a Particular
Buffer Size?
• I/O Activity

• Buffer Hit Ratio

• Number of Buffers Held (By CISZ)

45

Overlooked LSR Tuning Areas

• Buffer Pool Monopolization

• Need a CICS Tuning/Monitor to Determine the Number of Buffers
Being Held by a File

• Important If Principal Files Are Not Providing a Good Response Time

• Remember the Reverse “Robin Hood” Theory

• “Rob from the Poor to Give to the Rich”

• The “Rich” Are Your More Important Active Files

• Point of Diminishing Return

• Keep Adding Buffers Until Higher Activity Files Do Not Require More

46

Overlooked LSR Tuning Areas

• Maximum Key Size (Minor)

• Maximum Key Size Is Important as All VSAM Control Blocks Are
Shared and Must Accommodate the Largest File Key of the
Shared Pool

• If the Maximum Key Size Allocated to the Pool Is too Small, Files
with Larger Keys Will Not Open

• Many Installations Force the LSR Pool Key Size to 255 Bytes

• Although Using This Maximum Can Waste Storage, the Actual
Amount Depends on the Number of Strings Allocated Times the
Excess Key Size

• Decision is Installation Dependent

47

Overlooked LSR Tuning Areas

• Number of Strings Allocated
• Probably Only Tuned When Wait on Strings Conditions

Occur
• String Waits Can Occur If

• Maximum Number of Strings in the Pool Is Reached
• Maximum Number of Strings Assigned to the File Is Reached

• Many LSR Pools Strings are Over-Allocated
• The Objective Should Be to Have Sufficient Strings to

Handle Peak Periods Without Waiting for Strings
• Try to Allocate So That the High Used String Number Is

Around 50 to 60% of the Total Strings Allocated to the Pool

48

Overlooked LSR Tuning Areas

• Number Of Defined LSR Pools
• Two Schools of Thought

• School 1 – Use as Many Pools as Possible So That Files Can
Be Segregated to Reduce Contention and/or Interference

• School 2 – Use as Few as Possible Pools So That Resources
Can Be Used More Efficiently

• Considerations
• Are the Pools Allocated with a “Fudge Factor”?
• Which Files Are More Important So That Resources Should

Be Allocated to Them?

49

Overlooked LSR Tuning Areas

• There Are 8 (MVS) or 15 (VSE) LSR Pools Available Since
LSR Was Made Available to CICS
• Made Sense in the Beginning Because Buffer Search Algorithm

Was Sequential
• Larger Pools Increased CPU Time to Search
• Search Algorithm Changed – Hashing Technique

• Theory Behind LSR Is to Share Resources When Needed
(Repeat)
• So What Can Be Bad If the Principal Files (Most Active)

Control a High Percentage of the Buffers?
• Even at the Expense of Low Activity Files

50

Overlooked LSR Tuning Areas

• Multiple pool considerations
• Data Tables –

• Output operations go against the VSAM file
• LSR pool used for look-aside for records before going to

disk
• ROT = 90%+ Read Operations

• Low activity reduce look-aside capacity

• LSR VSAM Threadsafe files
• Lock mechanism may require more distribution of

requests
• Multiple pools for DB2/MQ CICS regions
• In case of FOR, single pool is probably better as no VSAM

Threadsafe is available (FCQROLY=YES)

51

LSR Pool Candidates

• LSR Provides the Best Look-Aside Algorithm Within CICS

• Generally, Files (High, Intermediate and Low Activity) Should Be
Assigned to LSR Except:

• Share Options 4 Files

• Files That Do Not Follow Command Level Guidelines
• Start Browse, Read Next …..Read for Update (Non-RLS)

• High CA Split Activity Files (Tune Independently)
• LSR Is the Gate to New File Features Within CICS

52

LSR Recommendations

• LSR Is Preferred Over NSR Buffering

• Superior Look-Aside Hit Ratio

• Tuning LSR Involves:

• Ensuring Proper Number of Buffers Defined
• Achieve Installation Look-Aside Hit Ratio Goals

• Eliminating Fragmentation

• Static Definition of the Pool(s)

• Continuous Review – Especially When Major Application
Changes Occur

• VSAM Tuning

53

Closing

• Use LSR over NSR

• Tune to eliminate I/O – Look-Aside Hits

• Monitor File Statistics periodically to ensure that Look-
Aside Hit Ratio objectives are being met

• When tuning LSR remember Robin Hood!

	CICS TS Performance Tutorial – I/O Tuning
	DISCLAIMERS/TRADEMARKS
	Agenda
	Introduction
	Introduction
	Non-Shared Resources
	Introduction to NSR
	NSR File Definition
	NSR File Definition
	NSR File Definition
	NSR Buffer Definition
	NSR Buffer Definition
	NSR Performance
	NSR Performance
	NSR Performance
	NSR Performance
	NSR Performance
	NSR Performance
	NSR Performance
	NSR Performance
	NSR Performance
	NSR Performance
	NSR Buffer Definition
	Slide Number 24
	Slide Number 25
	Local Shared Resources
	Robin Hood Theory
	Introduction to LSR
	Slide Number 29
	Slide Number 30
	Pool Definition
	Pool Definition
	Pool Definition
	Pool Definition
	LSR Pool Measurement
	LSR Pool Measurement
	LSR Pool Measurement
	LSR Pool Measurement
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	Overlooked LSR Tuning Areas
	LSR Pool Candidates
	LSR Recommendations
	Closing

